Departrment of Flectrical & ECE 150 Fundamentals of Programming

?mputer Engineering
-

@ UNIVERSITY OF WATERLOO ‘ .

‘s

Douglas Wilhelm Harder, M.Math.
Prof. Hiren Patel, Ph.D.
Prof. Werner Deitl, Ph.D.

~ © 2020 by the above. Some rights reserved.

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Deparfment of Electrical &

- $

Computer Engineering

Outline

e In this lesson, we will:
— Describe the idea of reusing code
 Specifically, the issues with cutting and pasting code
— Describe functions in C++
— Look at how parameters can be used in the function body
— We will look at implementing
A simple sine function

An absolute value function

The maximum of two parameters

A function that evaluates a cubic polynomial at a point
* The maximum of three parameters

— Look at how to use a function call within a function
— See numerous examples

Using other code

« To this point, we have described:

— Function declarations, including
int main();
double cos(double x);
double pow(double x, double y);

— One function definition:
int main() {
// Do something, if you want...
return 0;

@ UNIVERSITY OF WATERLO@ =

FACULEY OF ENGINEERING
Deparfment of Electrical &
" Computer Engineering

*

Review of functions

 Suppose we are authoring a piece of code that requires us to
repeatedly calculate the absolute value of a local variable:
int main() {
double x{};
std::cout << "Enter a real number 'x': "
std::cin >> x;

/aouble y{3.14159265358979323846 - x ;>

if (y<0){

y = -Y;
\J J
std::cout << "|x - pi| = " << y << std::endl;
return 9;

§ el
-1 W Computer Engineerin:

Review of functions

* Suppose we are authoring a piece of code that requires us repeatedly
determine the maximum of two values:

int main() {
double x{};
std::cout << "Enter a number 'x': ";
std::cin >> x;

int y{};
std::cout << "Enter a number 'y': ";
std::cin >> y;

// Set z = max(X, y);
double z{x};

rif (y>z){

zZ=Y;

J

std::cout << "max(x, y) = " << z << std::endl;

return 0;

@ = ent of Electrica
% Computer Engineering

-

Functions in C++

« First, note that it is not immediately obvious what each of these code
fragments are doing
— You must examine the code, and deduce what is expected
« Either that, or perhaps read the comments

— You have to repeat this every time you want to perform these
operations

« What is the likelihood that each time,
you will not make a mistake (introduce a bug)

UNIVERSITY OF WATERLO@ "~
FACUIinY OF ENGINEERING i
> Deparfment o_E\ec_tricaI &

" Computer Engineering

.

Functions in C++

« Ifyou find yourself performing a similar option more than once,
you are essentially cutting-and-pasting code

* Questions:
— What happens if you update one and forget the others?

— What happens if you find a bug in one but forget you copied that
code elsewhere before?

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Deparfment of Electrical &

Computer Engineering

-

Functions in C++

» A function is a means of authoring a piece of code to perform one
operation once

— Once it is tested, you and anyone else can repeatedly use it without
ever having to worry about it

— We have already seen numerous functions implemented in the
C math library

* You don’t care how they are implemented
 Similarly, people won’t care how your functions are implemented

@ ol | :
Computer Engineering

.

A simple sine function

« Here is a function declaration for my sine function:
double my _sin(double x);

 The function definition has a body that is executed when the
function is called: fynction identifier or function name

return type /
\ parameter and parameter type
double[my sin(| double x P=—
double result - X*X*X/6.0 + X*X*x*x*x/120.0 };]

local variable

\return|result

} \

function body

the returned value

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING
ent of Electrical &
" Computer Engineering

*

A simple sine function

double my sin(double| x|) {

) double result{ x - x*x*x/6.0
* We can now use this: F X*xFxKx*x/120.0 };
#define USE_MATH_DEFINES return result;
#include <cmath> }
#include <iostream>
Output:
// Function declarations 0.389419
. . . 0.389418
int main();
double my sin(double x);
argument

// Function definitions
int main() {

std::cout << my_sin(|©.4|) << std::endl;
std::cout << std::sin(0.4) << std::endl;

return 0;

// Insert function definition of my sin here

An absolute value function

UNIVERSITY OF WATERLO@

FACUIihY OF ENGINEERING :

Deparfment of Electrical & :
% Computer Engineering ‘

-

 Here is the declaration of the absolute value function:
double my abs(double x);

 The function definition has a body that is executed when the
function is called:

double my abs(double x) {
double result{};
// Do something to calculate |x|
return result;

Al

An absolute value function

* For this function
double my abs(double x);

» The identifier x is called a parameter of the function

— For different arguments, the output of the function may be different
» That is, the identifier parameterizes the function

» The scope of the parameter is restricted to the function body
— Like a local variable, it can be accessed and modified

— Its initial value is the value of the argument passed to the function in
the corresponding location during the function call

Computer Engineering

An absolute value function

What is the expected return value?
— If the parameter x >= 9,
the function should return x
— Ifthe parameter x < 0,
the function should return -x

Thus, one implementation of the function body is:
double my abs(double x) {
double result{};

if (x>0) {
result = x;
} else {
result = -x;

}

return result;

o F oy N
4

An absolute value function

UNIVERSITY OF WATERLO®@
FACUIgn EEEEEEEEEEEEE ¢
Deparfment of Electrical &

" Computer Engineering ‘

-

* We can now use this function:
int main() {
std::cout << my abs(-0.3) << std::endl;
std::cout << my abs(0.1) << std::endl;
std::cout << my _abs(-15.9) << std::endl;

return 9;

A function returning a polynomial

Suppose we have a cubic spline:

def| 42 4

p(X)=f—|x——x-7+3

2
T T

+ X

#define USE_MATH_DEFINES
##include <cmath>

// Function declarations
double spline(double x);
int main();

// Function definitions

double spline(double x) {
return|4.0*x*x/(M_PI*M_PI)*(

X - 4/M PI*x - M PI + 3.0

+ X,

3 00 OV - . B .~ N
I FAcuy orevomceniicy ;I ' . 4 ibraries and calling
' L)

A function returning a polynomial

* Inside main(), we can use this function:
int main() {
for (int k{@}; k <= 10; ++k) {
std::cout <<| M PI 2*(0.1*k)|<< ", \t"
<< spline(|M _PI 2*(@.1*k) |) << ",\t"
<< std::sin(|M_PI 2*(@.1*k) |) << std::endl;

} Output:
0, 0, 0
return @; @.157@8, @.155235, 0.156434
) 9.314159, 0.305062, 0.309017
0.471239, 0.446907, 0.45399
1- 0.628319, 0.578195, 0.587785
0.785398, 0.69635, 0.707107
0.942478, 0.798796, 0.809017
1.09956, 0.88296, 0.891007
. T 1.25664, 0.946265, 0.951057
—1 1 % P 1.41372, 0.986137, 0.987688
1.5708, 1, 1

o o ’ o N .
ibrarieS and calling

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Department of Electrical &

» . Computer Engineering

.

A max function

e Here is a different use of return:

// Function declarations
double max(double x, double y);

// Function definitions

double max(double x, double y) {
if (x»>=y) {

return Xx;

} else {

return vy,

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Deparfment of Electrical & y

Computer Engineering

Functions used in algebraic expressions

« Here we see a function call inside an argument to a function call:
#include <iostream>

// Function declarations
double my abs(double x);
int main();

// Function definitions

int main() {
double z{};
std: :cout << "Enter a real number: "“;
std::cin >> z;

std::cout << my abs(my abs(z) - 1.0) << std::endl;
return 0;

@ = ent of Electrica
% Computer Engineering

-

Functions used in algebraic expressions

« We could use the absolute value function inside another function:
// Function declarations
double my abs(double x);
double W(double x);

int main(); H3X|—3‘

// Function definitions
double W(double x) {
return my_abs(my_abs(3.0*x) - 3.0);

@ UNIVERSITY OF WATERLO@ =
FACU G
Dewﬂnen of Electrica

- :

Computer Engineering

» Here we use the function W in a program: *

p——

#tinclude <iostream>

// Function declarations
double abs(double x);

double W(double x);
int main();

// Function definitions
int main() {
for (int k{-20}; k <= 20; ++k) {
std::cout << @.1*k << ", " << W(0.1*k) << std::endl;

// Include function definitions for my abs and W

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

The maximum of three parameters

* Asthe requirements for the function become more complex,

so do the implementations
// Function declaration
double max(double x, double y, double z);

// Function definition
double max(double x, double y, double z) {
if (((x>=y) && (x >=2z)) {
return Xx;
} else if (y >= 2z) {
return y;
} else {
return z;

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

The maximum of three parameters

« Although, at times, perhaps,

other functions can be used to simplify the implementation
// Function declaration
double max(double x, double y, double z);

// Function definition
double max(double x, double y, double z) {
return max(max(x, y), z);

Computer Engineering

A factorial function

Anything you have authored in main() can also be part of a function

— Consider this implementation of the factorial
// Function declaration

int factorial(int n); n!::n-(n-—l)-(n——2)~-3-2-1

// Function definition ::1-2-3-~(n——2)-(n-—1)-n
int factorial(int n) {
int result{1};

for (int k{1}; k <= n; ++k) {
result *= k;

return result;

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &
Computer Engineering

Variations on the absolute value function

» There are many equally valid ways of writing the same function:

double abs(double x) {
if (x>0) {
return Xx;
} else {
return -x;

}

double abs(double x) {
double result{x};

if (result < 0) {
result = -result;

}

return result;

double abs(double x) {
double result{};

if ((x >=0) {
result = x;
} else {
result = -Xx;

}

return result;

}

double abs(double x) {
if (x <0) {
X = -X;

}

return Xx;

@ ol :
!. Computer Engineering

Variations on the maximum
of two parameters

» There are many equally valid ways of writing the same function:

double max(double x, double y) {
if (x»>=y) {

return x; double max(double x , double y) {
} else { double result{x};
return y;
} if (result <y) {
} result = y;
}
double max(double x , double y) { return result;
if (x<y){ }
X =Y,
}
return Xx;

UNIVERSITY OF WATERLO@

FACULEY OF ENGINEERING \ :
Depagtment of Electrical & 3
Computer Engineering ‘

¥V /.
Variations on the maximum
of three parameters

-

» There are many equally valid ways of writing the same function:

double max(double x, double y, double z) {

if ((x >=y) & (x >=2)) { double max(double x , double y , double z) {

return Xx; .
}else if (y 5=z) { double result{x};
lreturn Y5 if (result <y) {
} else { result = y;
return z; }
}
} if (result < z) {
result = z;
double max(double x , double y , double z) { ¥
if (x<y){
X =Y; return result;
} }
if (x<z){
X = Z;
}
return X;

UNIVERSITY OF WATERLO®W vl g
Variations on the maximum
of three parameters

» There are many equally valid ways of writing the same function:

double max(double x, double y, double z) {

if (x>=y) {
if ((x»>=2z) {

return Xx;

} else {
return z;

}

} else {

if (y»>=2z) {
return y;

} else {
return z;

}

! Computer Engineering

-

Example

» Let’s write a function that solves a problem:
— Let us write a function that returns the root of ax + b
— Now, if ax+b=0

ax=-b
b
X=——
a

— Note that we don’t care about the variable:

b
. —g is the root of ay + band aé+ b

— Thus, the only information we need are the values of the coefficients

UNIVERSITY OF WATERLO@ "~
FACULEY OF ENGINEERING
Depagtment of Electrical &

L Computer Engineering

.

Example

« Thus, a reasonable function declaration is:
// Function declarations

// - Find the root of ax + b where 'x' is the unknown
double linear _root(double a, double b);

* The function implementation is:
// Function declarations

// linear_root
// Parameters:

// double a The coefficient of 'x'
// double b The constant coefficient
// Find the root of the linear polynomial ax + b
// - The equation ax + b = @ <=> ax = -b

// <=> X = -b/a

double linear_root(double a, double b) {
return -b/a;

@ Dew'ljh i
% Computer Engineering

Summary

« Following this lesson, you now:
— Understand how to author a function body

— Know how to use and modify parameters inside the function body,
just like local variables

— Understand that there are multiple ways of implementing a function
that satisfies the same requirements

— Have an idea of how to start authoring functions based on the
requirements of that function

— Know that you can call one function from within another function

— Have an idea that there are sometimes easier ways of implementing
the same function

* You may be able to deduce that more difficult implementations are
not necessarily better...

W UNIVERSITY OF WATERLO® s
AS FACULJ'Y OF ENGINEERIN!
@ Department of Electrical &

‘ Computer Engineering

.

References

[1] Cplusplus.com
http://www.cplusplus.com/reference/cmath/

W UNIVERSITY OF WATERLO®
Aﬁ FACULTY OF ENGINEERINGS

Departfment of Electrical &
- Computer Engineering

¢

Acknowledgments

None so far.

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

