
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Deitl, Ph.D.

© 2020 by the above. Some rights reserved.

Writing functions

2
Libraries and calling functions

Outline

• In this lesson, we will:

– Describe the idea of reusing code

• Specifically, the issues with cutting and pasting code

– Describe functions in C++

– Look at how parameters can be used in the function body

– We will look at implementing

• A simple sine function

• An absolute value function

• The maximum of two parameters

• A function that evaluates a cubic polynomial at a point

• The maximum of three parameters

– Look at how to use a function call within a function

– See numerous examples

3
Libraries and calling functions

Using other code

• To this point, we have described:

– Function declarations, including

int main();

double cos(double x);

double pow(double x, double y);

– One function definition:

int main() {

// Do something, if you want...

return 0;

}

4
Libraries and calling functions

Review of functions

• Suppose we are authoring a piece of code that requires us to
repeatedly calculate the absolute value of a local variable:

int main() {

double x{};

std::cout << "Enter a real number 'x': ";

std::cin >> x;

double y{3.14159265358979323846 - x };

if (y < 0) {

y = -y;

}

std::cout << "|x - pi| = " << y << std::endl;

return 0;

}

5
Libraries and calling functions

Review of functions

• Suppose we are authoring a piece of code that requires us repeatedly
determine the maximum of two values:

int main() {

double x{};

std::cout << "Enter a number 'x': ";

std::cin >> x;

int y{};

std::cout << "Enter a number 'y': ";

std::cin >> y;

// Set z = max(x, y);

double z{x};

if (y > z) {

z = y;

}

std::cout << "max(x, y) = " << z << std::endl;

return 0;

}

6
Libraries and calling functions

Functions in C++

• First, note that it is not immediately obvious what each of these code
fragments are doing

– You must examine the code, and deduce what is expected

• Either that, or perhaps read the comments

– You have to repeat this every time you want to perform these
operations

• What is the likelihood that each time,

you will not make a mistake (introduce a bug)

7
Libraries and calling functions

Functions in C++

• If you find yourself performing a similar option more than once,

you are essentially cutting-and-pasting code

• Questions:

– What happens if you update one and forget the others?

– What happens if you find a bug in one but forget you copied that
code elsewhere before?

8
Libraries and calling functions

Functions in C++

• A function is a means of authoring a piece of code to perform one
operation once

– Once it is tested, you and anyone else can repeatedly use it without
ever having to worry about it

– We have already seen numerous functions implemented in the
C math library

• You don’t care how they are implemented

• Similarly, people won’t care how your functions are implemented

9
Libraries and calling functions

A simple sine function

• Here is a function declaration for my sine function:

double my_sin(double x);

• The function definition has a body that is executed when the
function is called:

double my_sin(double x) {

double result{ x - x*x*x/6.0 + x*x*x*x*x/120.0 };

return result;

}

parameter and parameter type

local variable

function identifier or function name

function body

return type

the returned value

10
Libraries and calling functions

A simple sine function

• We can now use this:
#define _USE_MATH_DEFINES

#include <cmath>

#include <iostream>

// Function declarations

int main();

double my_sin(double x);

// Function definitions

int main() {

std::cout << my_sin(0.4) << std::endl;

std::cout << std::sin(0.4) << std::endl;

return 0;

}

// Insert function definition of my_sin here

double my_sin(double x) {
double result{ x - x*x*x/6.0

+ x*x*x*x*x/120.0 };
return result;

}

argument

Output:
0.389419
0.389418

11
Libraries and calling functions

An absolute value function

• Here is the declaration of the absolute value function:

double my_abs(double x);

• The function definition has a body that is executed when the
function is called:

double my_abs(double x) {

double result{};

// Do something to calculate |x|

return result;

}

12
Libraries and calling functions

An absolute value function

• For this function

double my_abs(double x);

• The identifier x is called a parameter of the function

– For different arguments, the output of the function may be different

• That is, the identifier parameterizes the function

• The scope of the parameter is restricted to the function body

– Like a local variable, it can be accessed and modified

– Its initial value is the value of the argument passed to the function in
the corresponding location during the function call

13
Libraries and calling functions

An absolute value function

• What is the expected return value?

– If the parameter x >= 0,

the function should return x

– If the parameter x < 0,

the function should return -x

• Thus, one implementation of the function body is:
double my_abs(double x) {

double result{};

if (x >= 0) {

result = x;

} else {

result = -x;

}

return result;

}

14
Libraries and calling functions

An absolute value function

• We can now use this function:

int main() {

std::cout << my_abs(-0.3) << std::endl;

std::cout << my_abs(0.1) << std::endl;

std::cout << my_abs(-15.9) << std::endl;

return 0;

}

15
Libraries and calling functions

A function returning a polynomial

• Suppose we have a cubic spline:

#define _USE_MATH_DEFINES

#include <cmath>

// Function declarations

double spline(double x);

int main();

// Function definitions

double spline(double x) {

return 4.0*x*x/(M_PI*M_PI)*(

x - 4/M_PI*x - M_PI + 3.0

) + x;

}

 
2def

2

4 4
3

x
p x x x x

 

 
     

 

16
Libraries and calling functions

A function returning a polynomial

• Inside main(), we can use this function:
int main() {

for (int k{0}; k <= 10; ++k) {

std::cout << M_PI_2*(0.1*k) << ",\t"

<< spline(M_PI_2*(0.1*k)) << ",\t"

<< std::sin(M_PI_2*(0.1*k)) << std::endl;

}

return 0;

}

Output:
0, 0, 0
0.15708, 0.155235, 0.156434
0.314159, 0.305062, 0.309017
0.471239, 0.446907, 0.45399
0.628319, 0.578195, 0.587785
0.785398, 0.69635, 0.707107
0.942478, 0.798796, 0.809017
1.09956, 0.88296, 0.891007
1.25664, 0.946265, 0.951057
1.41372, 0.986137, 0.987688
1.5708, 1, 1

17
Libraries and calling functions

A max function

• Here is a different use of return:

// Function declarations

double max(double x, double y);

// Function definitions

double max(double x, double y) {

if (x >= y) {

return x;

} else {

return y;

}

}

18
Libraries and calling functions

Functions used in algebraic expressions

• Here we see a function call inside an argument to a function call:

#include <iostream>

// Function declarations

double my_abs(double x);

int main();

// Function definitions

int main() {

double z{};

std::cout << "Enter a real number: ";

std::cin >> z;

std::cout << my_abs(my_abs(z) - 1.0) << std::endl;

return 0;

}

19
Libraries and calling functions

Functions used in algebraic expressions

• We could use the absolute value function inside another function:

// Function declarations

double my_abs(double x);

double W(double x);

int main();

// Function definitions

double W(double x) {

return my_abs(my_abs(3.0*x) - 3.0);

}

3 3x 

20
Libraries and calling functions

Functions used in algebraic expressions

• Here we use the function W in a program:
#include <iostream>

// Function declarations

double abs(double x);

double W(double x);

int main();

// Function definitions

int main() {

for (int k{-20}; k <= 20; ++k) {

std::cout << 0.1*k << ", " << W(0.1*k) << std::endl;

}

}

// Include function definitions for my_abs and W

21
Libraries and calling functions

The maximum of three parameters

• As the requirements for the function become more complex,

so do the implementations
// Function declaration

double max(double x, double y, double z);

// Function definition

double max(double x, double y, double z) {

if ((x >= y) && (x >= z)) {

return x;

} else if (y >= z) {

return y;

} else {

return z;

}

}

22
Libraries and calling functions

The maximum of three parameters

• Although, at times, perhaps,

other functions can be used to simplify the implementation
// Function declaration

double max(double x, double y, double z);

// Function definition

double max(double x, double y, double z) {

return max(max(x, y), z);

}

23
Libraries and calling functions

A factorial function

• Anything you have authored in main() can also be part of a function

– Consider this implementation of the factorial

// Function declaration

int factorial(int n);

// Function definition

int factorial(int n) {

int result{1};

for (int k{1}; k <= n; ++k) {

result *= k;

}

return result;

}

   ! 1 2 3 2 1n n n n      

   1 2 3 2 1n n n      

24
Libraries and calling functions

Variations on the absolute value function

• There are many equally valid ways of writing the same function:

double abs(double x) {
if (x >= 0) {

return x;
} else {

return -x;
}

}

double abs(double x) {
double result{};

if (x >= 0) {
result = x;

} else {
result = -x;

}

return result;
}

double abs(double x) {
double result{x};

if (result < 0) {
result = -result;

}

return result;
}

double abs(double x) {
if (x < 0) {

x = -x;
}

return x;
}

25
Libraries and calling functions

Variations on the maximum
of two parameters

• There are many equally valid ways of writing the same function:

double max(double x, double y) {
if (x >= y) {

return x;
} else {

return y;
}

}

double max(double x , double y) {
if (x < y) {

x = y;
}

return x;
}

double max(double x , double y) {
double result{x};

if (result < y) {
result = y;

}

return result;
}

26
Libraries and calling functions

Variations on the maximum
of three parameters

• There are many equally valid ways of writing the same function:

double max(double x, double y, double z) {
if ((x >= y) && (x >= z)) {

return x;
} else if (y >= z) {

return y;
} else {

return z;
}

}

double max(double x , double y , double z) {
if (x < y) {

x = y;
}

if (x < z) {
x = z;

}

return x;
}

double max(double x , double y , double z) {
double result{x};

if (result < y) {
result = y;

}

if (result < z) {
result = z;

}

return result;
}

27
Libraries and calling functions

Variations on the maximum
of three parameters

• There are many equally valid ways of writing the same function:

double max(double x, double y, double z) {
if (x >= y) {

if (x >= z) {
return x;

} else {
return z;

}
} else {

if (y >= z) {
return y;

} else {
return z;

}
}

}

28
Libraries and calling functions

Example

• Let’s write a function that solves a problem:

– Let us write a function that returns the root of ax + b

– Now, if

– Note that we don’t care about the variable:

• is the root of ay + b and ax + b

– Thus, the only information we need are the values of the coefficients

0ax b 

ax b 
b

x
a

 

b

a


29
Libraries and calling functions

Example

• Thus, a reasonable function declaration is:
// Function declarations

// - Find the root of ax + b where 'x' is the unknown

double linear_root(double a, double b);

• The function implementation is:
// Function declarations

// linear_root

// Parameters:

// double a The coefficient of 'x'

// double b The constant coefficient

// Find the root of the linear polynomial ax + b

// - The equation ax + b = 0 <=> ax = -b

// <=> x = -b/a

double linear_root(double a, double b) {

return -b/a;

}

30
Libraries and calling functions

Summary

• Following this lesson, you now:

– Understand how to author a function body

– Know how to use and modify parameters inside the function body,
just like local variables

– Understand that there are multiple ways of implementing a function
that satisfies the same requirements

– Have an idea of how to start authoring functions based on the
requirements of that function

– Know that you can call one function from within another function

– Have an idea that there are sometimes easier ways of implementing
the same function

• You may be able to deduce that more difficult implementations are
not necessarily better…

31
Libraries and calling functions

References

[1] Cplusplus.com

http://www.cplusplus.com/reference/cmath/

32
Libraries and calling functions

Acknowledgments

None so far.

33
Libraries and calling functions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

34
Libraries and calling functions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

